Differential entrainment and learning-related dynamics of spike and local field potential activity in the sensorimotor and associative striatum.
نویسندگان
چکیده
Parallel cortico-basal ganglia loops are thought to have distinct but interacting functions in motor learning and habit formation. In rats, the striatal projection neuron populations (MSNs) in the dorsolateral and dorsomedial striatum, respectively corresponding to sensorimotor and associative regions of the striatum, exhibit contrasting dynamics as rats acquire T-maze tasks (Thorn et al., 2010). Here, we asked whether these patterns could be related to the activity of local interneuron populations in the striatum and to the local field potential activity recorded simultaneously in the corresponding regions. We found that dorsolateral and dorsomedial striatal fast-spiking interneurons exhibited task-specific and training-related dynamics consistent with those of corresponding MSN populations. Moreover, both MSNs and interneuron populations in both regions became entrained to theta-band (5-12 Hz) frequencies during task acquisition. However, the predominant entrainment frequencies were different for the sensorimotor and associative zones. Dorsolateral striatal neurons became entrained mid-task to oscillations centered ∼ 5 Hz, whereas simultaneously recorded neurons in the dorsomedial region became entrained to higher frequency (∼ 10 Hz) rhythms. These region-specific patterns of entrainment evolved dynamically with the development of region-specific patterns of interneuron and MSN activity, indicating that, with learning, these two striatal regions can develop different frequency-modulated circuit activities in parallel. We suggest that such differential entrainment of sensorimotor and associative neuronal populations, acquired through learning, could be critical for coordinating information flow throughout each trans-striatal network while simultaneously enabling nearby components of the separate networks to operate independently.
منابع مشابه
Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats
Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learn...
متن کاملHabit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum.
Rhythmic brain activity is thought to reflect, and to help organize, spike activity in populations of neurons during on-going behavior. We report that during learning, a major transition occurs in task-related oscillatory activity in the ventromedial striatum, a striatal region related to motivation-dependent learning. Early on as rats learned a T-maze task, bursts of 70- to 90-Hz high-γ activi...
متن کاملDifferential Dynamics of Activity Changes in Dorsolateral and Dorsomedial Striatal Loops during Learning
The basal ganglia are implicated in a remarkable range of functions influencing emotion and cognition as well as motor behavior. Current models of basal ganglia function hypothesize that parallel limbic, associative, and motor cortico-basal ganglia loops contribute to this diverse set of functions, but little is yet known about how these loops operate and how their activities evolve during lear...
متن کاملThe Effects of Mild Forced Treadmill Exercise and GABA-B Agonist on Locomotor Activity and Anxiety-Behavior in Rats with Striatum Dysfunction
Background. the basal ganglia’s circuit dysfunction has a major role in a range of movement disorders. Some evidence has shown that exercise can improve performance, especially locomotor activity after brain injuries. There was currently insufficient information to define the impacts of intensity, duration, and frequency of different exercises. Objectives. in this study, we examine the r...
متن کاملEffects of dopamine depletion on LFP oscillations in striatum are task- and learning-dependent and selectively reversed by L-DOPA.
A major physiologic sign in Parkinson disease is the occurrence of abnormal oscillations in cortico-basal ganglia circuits, which can be normalized by L-DOPA therapy. Under normal circumstances, oscillatory activity in these circuits is modulated as behaviors are learned and performed, but how dopamine depletion affects such modulation is not yet known. We here induced unilateral dopamine deple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 8 شماره
صفحات -
تاریخ انتشار 2014